

YIELD ATTRIBUTES AND YIELD OF MAIZE (Zea mays L.) AS INFLUENCED BY CROP RESIDUES AND NUTRIENT MANAGEMENT PRACTICES

VIJAYA BHASKAR REDDY UPPALURU*, PRABHAKARA REDDY GADDAM, SRINIVASA REDDY MALLU AND P. KAVITHA

Department of Agronomy, Sugarcane Research Station, Vuyyuru.

Date of Receipt: 24-03-2023

ABSTRACT

Date of Acceptance: 29-06-2023

During *rabi*, 2014 and 2015 at Agricultural College, Mahanandi the yield attributes *viz.*, number of cobs plant⁻¹, cob length and hundred grain weight of maize were not influenced significantly due to residual nutrients, nutrient doses \pm crop residues and their interaction except number of grains cob⁻¹. Graded levels of nitrogen exerted favorable influence on grain yield of maize. In the present study, the highest yield was obtained with the application of 250 kg and 300 kg N ha⁻¹ in the previous season but the response to P levels was marginal. Significantly higher grain yield was recorded with F₂ (125% of F₁) which was however on par with F₄ (F₂ + *Kharif* crop residue incorporation) in both the years.

KEYWORDS: Crop residue, Yield attributes, Cobs, Grain yield and Stover yield.

INTRODUCTION

Maize (Zea mays L.) is an important cereal food crop cultivated both in tropical and temperate regions of the world with the highest production and productivity as compared to rice and wheat. In the world, maize is cultivated in an area of 146 million hectares with a production of 685 million tonnes and an average productivity of 4.7 t ha⁻¹. It is the third most important cereal after rice and wheat for human food by contributing to 9 per cent of India's food basket and 5 per cent to World's dietary energy supply (Saikumar et al., 2012). India is the sixth largest producer of maize with 22.36 million tonnes of production from 9.40 million hectares, with a productivity of 2.4 t ha⁻¹. In Andhra Pradesh, it is cultivated in an area of 0.23 million hectares with a production of 1.41 million tonnes and productivity of 6.1 t ha⁻¹ (ASG, 2016).

The demand for maize owing to burgeoning growth rate of poultry, livestock, fish and wet and dry milling industries is expected to increase from current level of 22.36 million tonnes to 45 million tonnes by 2030 (DMR, 2011). To meet the growing demand, enhancement of maize yield in coming years across all the growing locations in India is the big challenge. Maize is a heavy feeder of nutrients, especially nitrogen and phosphorus, the deficiency of which limits the growth, yield and quality of the crop. In order to meet such challenges, over dependence on chemical fertilizers alone would lead to gradual decline in organic matter content and native fertility status of the soil, which inturn reflects on the future productivity. In addition, due to recent escalation in prices of nitrogenous and phosphatic fertilizers, maize growers are facing crisis in purchase of the above fertilizers. On the other hand, organic manures need to be applied in bulk to meet the heavy nutrient requirement of hybrid maize for improving the fertility status of the soil on sustained manner, which is also not possible due to the scarcity of organic manures. Hence, a strategy of integrated use of nitrogen and phosphorus fertilizers in combination with any amount of cheaper organic source like previous crop residue, which is abundantly available locally should be tried to satisfy the crop requirement to produce higher yield, without impairing soil health. The application of organic residue (e.g., straw) to soils represents a valuable recycling strategy (Cavuela et al., 2009), which reduces in part our dependence on mineral fertilizers. Hence, the present study was under taken to examine the degree to which preceding maize can contribute to the succeeding maize and the appropriate fertilizer schedule.

MATERIAL AND METHODS

The field experiment was conducted at College Farm of Agricultural College, Mahanandi campus of Acharya N. G. Ranga Agricultural University, situated at 15.51°N latitude, 78.61°E longitude and at an altitude of 233.5 m above the mean sea level, in the scarce rainfall

^{*}Corresponding author, E-mail: u.vijayabhaskarareddy@angrau.ac.in

zone of Andhra Pradesh. A composite soil sample was collected at random from 0-30 cm soil depth and analyzed for physico-chemical properties prior to start of the experiments. The soil was sandy loam in texture, neutral in reaction, low in organic carbon and available nitrogen (275 kg ha⁻¹), high in available phosphorus (153 kg ha⁻¹) and potassium (670 kg ha⁻¹) The experiment was conducted in the same plots of *kharif* season and was laid out in a split-plot design with three replications.

Treatments

There were nine main plots consisting of three nitrogen levels and three phosphorus levels of *kharif* season and four sub plots comprising of fertilizer and crop residue management practices.

Main plot treatments

Nine main plots (residual nutrients) consisting combination of three nitrogen levels 200, 250 and 300 kg N ha⁻¹ (N₁, N₂ and N₃ respectively) and three phosphorus levels 40, 60 and 80 kg P₂O₅ ha⁻¹ (P₁, P₂ and P₃ respectively) of *kharif* season.

Sub plot treatments

Four sub plots (nutrient doses \pm crop residues) comprising of fertilizer and crop residue management practices. F₁ : Recommended dose of N and P₂O₅ (250 kg N and 80 kg P₂O₅ ha⁻¹), F₂ : 125% of F₁, F₃ : F₁+ *Kharif* crop residue incorporation and F₄ : F₂+ *Kharif* crop residue incorporation. A common dose of 60 kg K₂O ha⁻¹ was applied to all the plots.

The crop was sown at a spacing of 75 cm \times 15 cm. The test cultivar was P-3396 a single cross hybrid with the yield potential ranging from 7.5 to 8.0 t ha⁻¹. After harvest of the economic produce of *kharif* maize the stover was allowed to dry in the field itself and plot wise weight of the crop residue was recorded.

Length of the cob from blunt end to shank tip of cobs harvested from five tagged plants was measured and the average of each treatment was expressed as cob length in cm. Total number of grains cob⁻¹ from cobs harvested from five tagged plants was counted and the mean value was presented as number of grains cob⁻¹. Hundred grains randomly drawn from the composite sample of grain yield of net plot of each treatment were weighed and expressed in g. Grain from net plot was sun dried sufficiently, cleaned thoroughly, weighed and expressed in kg ha⁻¹. Stover obtained from net plot was

thoroughly sun dried to a constant weight and expressed in kg ha⁻¹.

RESULTS AND DISCUSSION

Number of cobs plant⁻¹

Residual nutrients (main plots), nutrient doses \pm crop residues (sub plots) and their interaction did not affect the number of cobs plant⁻¹ during both the years. All the main and sub plot treatments recorded one cob plant⁻¹ and without having any significant interaction during both the years.

Cob length

Crop sown in N₂P₃ (250 kg N + 80 kg P₂O₅ ha⁻¹) main plot in the first year and N₃P₁ (300 kg N + 40 kg P₂O₅ ha⁻¹) in the second year resulted in higher cob length which was however on par with all the remaining main plots during both the years. With regard to sub plots, higher cob length was recorded with F₂ (125% of F₁) in the first year and F₄ (F₂+ *Kharif* crop residue incorporation) in the second year, which was statistically on par with the remaining sub plots.

Number of grains cob⁻¹

Numbers of grains per cob were significantly affected by residual nutrients (main plots), nutrient doses \pm crop residues (sub plots), but the interaction was not significant during both the years. Crop sown in N₃P₃ (300 kg N + 80 kg P₂O₅ ha⁻¹) main plot in the first year and N₂P₂ (250 kg N + 60 kg P₂O₅ ha⁻¹) in the second year resulted in significantly more number of grains cob⁻¹, which were however on par with all the remaining main plots except with N₁P₂ (200 kg N + 60 kg P₂O₅ ha⁻¹) and N₁P₃ (200 kg N + 80 kg P₂O₅ ha⁻¹) during both the years.

With regard to sub plots more number of grains cob⁻¹ were recorded with F_2 (125% of F_1) in both the years, which were statistically on par with F_1 (Recommended dose of N and P_2O_5) and F_4 (F_2 + *Kharif* crop residue incorporation) during the first year and with F_3 (F_1 + *Kharif* crop residue incorporation) and F_4 (F_2 + *Kharif* crop residue incorporation) and F_4 (F_2 + *Kharif* crop residue incorporation) during the second year.

Hundred grain weight

Crop sown in N_3P_1 (300 kg N + 40 kg P_2O_5 ha⁻¹) main plot in the first year and N_2P_2 (250 kg N + 60 kg P_2O_5 ha⁻¹) in the second year resulted more hundred grain weight, which were however on par with all the remaining main plots during both the years. With regard Vijaya Bhaskar Reddy et al.,

		-	<i>Rabi</i> , 2014	<i>Rabi</i> , 2015						
	F ₁	F ₂	F ₃	F ₄	Mean	\mathbf{F}_1	F ₂	F ₃	F ₄	Mean
N_1P_1	16.7	16.5	16.7	16.9	16.7	17.0	17.7	17.9	18.0	17.6
N_1P_2	15.4	16.8	16.5	16.2	16.2	16.4	16.3	17.3	17.1	16.8
N_1P_3	16.6	15.7	14.4	16.6	15.8	15.6	15.2	16.5	16.8	16.0
N_2P_1	16.1	16.6	16.3	16.1	16.3	17.1	16.5	15.9	16.9	16.6
N_2P_2	16.6	17.6	16.5	16.0	16.7	16.5	16.9	15.8	16.8	16.5
N_2P_3	16.7	17.1	16.7	17.0	16.9	16.0	15.7	16.4	17.5	16.4
N_3P_1	16.2	16.4	17.9	16.1	16.7	17.2	17.5	17.6	16.5	17.2
N_3P_2	16.1	16.2	16.8	17.4	16.6	16.8	17.6	16.9	16.6	16.9
N_3P_3	15.8	17.1	17.0	17.2	16.8	17.0	17.3	17.1	17.0	17.1
Mean	16.2	16.7	16.5	16.6		16.6	16.7	16.8	17.0	

Table 1. Cob length (cm) of rabi maize as influenced by crop residue and nutrient management practices

	Rabi	, 2014	<i>Rabi</i> , 2015		
	SEm ±	CD (P = 0.05)	SEm ±	CD (P = 0.05)	
NP	0.22	NS	0.51	NS	
F	0.20	NS	0.26	NS	
NP at F	0.57	NS	0.85	NS	
F at NP	0.44	NS	1.02	NS	

to sub plots, more hundred grain weight was recorded with F_4 (F_2 + *Kharif* crop residue incorporation) in both the years, which were statistically on par with the remaining sub plots.

In the present study the different yield attributing characters *viz.*, number of cobs per plant, cob length and hundred grain weight were not influenced by the residual nitrogen and phosphorus levels as well as crop residues. Whereas number of grains per cob were significantly influenced by residual nutrients. Similar observations on the yield attributing characters due to residual nutrients were reported by Maobe *et al.* (2010) in sandy clay loam soils.

Grain yield

Variation in grain yield was significant due to residual nutrients (main plots) and nutrient doses \pm crop residues (sub plots) but their interaction was not significant during both the years.

Graded levels of nitrogen exerted favorable influence on grain yield of maize. In the present study,

the highest yield was obtained with the application of 250 kg and 300 kg N ha⁻¹ in the previous season but the response to P levels was marginal. Higher level of biomass accrual and efficient translocation of assimilates to the sink due to the sufficient and continuous supply of nitrogen and other nutrients throughout the crop period might be the reason. These results are in accordance with the findings of Kiran (2004).

The highest grain yield of hybrid maize was produced with the application of 125% recommended dose of N and P_2O_5 alone, however comparable with along with crop residue incorporation, application of 100% recommended dose of N and P_2O_5 alone, while it was found to be the lowest with the application of 100% recommended dose of N and P_2O_5 along with crop residue incorporation. The higher level of grain yield was due to the favourable influence of consistent and adequate availability of nutrients especially nitrogen throughout the crop growth period, which favoured the production of photosynthates coupled with better partitioning to the sink, under higher level of nitrogen and phosphorus. The Yield attributes and management practices

Table 2. Number of grains cob-1 in rabi maize as influenced by crop residue and nutrient management practices

	<i>Rabi</i> , 2014					<i>Rabi</i> , 2015				
	\mathbf{F}_1	\mathbf{F}_2	F ₃	\mathbf{F}_4	Mean	\mathbf{F}_1	\mathbf{F}_2	F ₃	F ₄	Mean
N_1P_1	627	579	541	682	607	576	593	582	590	585
N_1P_2	567	628	569	542	577	518	516	660	563	564
N_1P_3	542	592	524	544	551	545	592	539	587	567
N_2P_1	597	614	596	590	599	620	624	590	601	609
N_2P_2	595	615	585	606	600	639	647	580	621	622
N_2P_3	609	604	620	603	609	551	625	585	611	593
N_3P_1	563	615	588	592	590	572	622	623	630	612
N_3P_2	609	621	563	606	600	599	615	614	637	616
N ₃ P ₃	608	620	602	614	611	634	638	590	594	614
Mean	591	610	577	598		583	608	596	606	

	Rabi	, 2014	<i>Rabi</i> , 2015			
	SEm ±	CD (P = 0.05)	SEm ±	CD (P = 0.05)		
NP	10.7	32	12.9	39		
F	7.4	21	8.6	24		
NP at F	21.9	NS	32.0	NS		
F at NP	21.5	NS	36.9	NS		

results are in conformity with those of Singh *et al.* (2000) and Ramu (2005).

Stover yield

Variation in stover yield was significant due to residual nutrient effects (main plots) and nutrient doses \pm crop residues (sub plots) but their interaction was not significant during both the years.

The lowest stover yield was recorded in F_1 (Recommended dose of N and P_2O_5) during both the years of study. Significant interaction was not observed during both the years with regard to stover yield of maize.

Graded levels of nitrogen exerted favorable influence on stover yield of maize. In the present study, the highest stover yield was obtained with the application of 300 kg N ha⁻¹ in the previous season but the response to P levels was not consistent. Higher level of biomass accrual and efficient translocation of assimilates to the sink due to the sufficient and continuous supply of nitrogen and other nutrients throughout the crop period might be responsible for the production of elevated level of stover yield. These results corroborate with the findings of Kiran (2004), Ahmad *et al.* (2007), Verma *et al.* (2013) and Pandiaraj *et al.* (2015).

The higher stover yield of maize was produced with the application of 125% recommended dose of N and P_2O_5 alone in the first year and 125% recommended dose of N and P_2O_5 along with crop residue incorporation in the second year. The higher level of stover yield was due to the favourable influence of consistent and adequate availability of nutrients throughout the crop growth period, which favored the production of photosynthates coupled with better partitioning to the sink and better vegetative growth as evidenced by enhanced dry matter production under higher level of nitrogen and phosphorus with crop residue incorporation. The results are in conformity with those of Singh *et al.* (2000) and Ramu (2005).

Application of 250 kg N and 60 kg P_2O_5 ha⁻¹ during *kharif* season and 125% recommended dose of N and

Vijaya Bhaskar Reddy et al.,

	<i>Rabi</i> , 2014					<i>Rabi</i> , 2015				
	F ₁	F ₂	F ₃	F4	Mean	\mathbf{F}_1	F ₂	F ₃	F4	Mean
N_1P_1	26.9	27.0	27.1	28.1	27.3	27.4	27.2	27.0	27.2	27.2
N_1P_2	27.1	27.5	26.0	26.1	26.7	25.8	26.3	25.7	26.0	26.0
N_1P_3	26.2	26.3	26.4	26.5	26.3	27.0	26.8	26.8	27.2	27.0
N_2P_1	26.1	26.9	26.3	26.4	26.4	26.3	26.4	25.8	28.1	26.7
N_2P_2	27.2	27.7	27.5	26.6	27.2	26.7	27.7	26.9	28.0	27.3
N_2P_3	26.3	27.0	26.5	27.9	26.9	26.5	26.2	25.1	28.2	26.5
N ₃ P ₁	27.5	27.8	27.2	28.5	27.8	26.8	26.6	26.2	27.7	26.8
N_3P_2	27.2	27.5	26.1	27.0	27.1	26.9	27.2	26.7	27.3	27.0
N ₃ P ₃	27.4	27.3	27.3	28.1	27.5	26.5	27.8	25.7	28.1	27.0
Mean	26.9	27.2	26.7	27.3		26.7	26.9	26.2	27.5	

Table 3. Hundred grain weight (g) of *rabi* maize as influenced by crop residue and nutrient management practices

	Rabi,	2014	<i>Rabi</i> , 2015			
	SEm ±	CD (P = 0.05)	SEm ±	CD (P = 0.05)		
NP	0.33	NS	0.76	NS		
F	0.27	NS	0.30	NS		
NP at F	0.77	NS	1.10	NS		
F at NP	0.65	NS	1.52	NS		

Table 4. Grain yield (kg ha-1) of *rabi* maize as influenced by crop residue and nutrient management practices

	<i>Rabi</i> , 2014					<i>Rabi</i> , 2015				
	$\mathbf{F_1}$	\mathbf{F}_{2}	F ₃	$\mathbf{F_4}$	Mean	\mathbf{F}_1	\mathbf{F}_2	F ₃	F ₄	Mean
N_1P_1	6864	6999	6990	7024	6969	7055	7116	6998	7152	7080
N_1P_2	6954	6969	6813	7185	6980	6421	6838	6129	7197	6646
N_1P_3	6413	6890	6375	6919	6649	5881	6456	6252	6670	6315
N_2P_1	6746	7704	6431	6767	6912	5819	7421	6521	6749	6628
N_2P_2	7990	7436	6862	7649	7484	7130	7384	7148	7409	7268
N_2P_3	7738	7828	6815	7339	7430	7366	7433	7334	7493	7406
N_3P_1	7864	7406	6972	6852	7273	7183	7249	7261	7408	7275
N_3P_2	6765	7931	7129	7252	7269	7363	7677	6858	7024	7230
N ₃ P ₃	6931	7259	7213	8026	7357	7359	7458	7441	7561	7455
Mean	7140	7380	6844	7224		6842	7226	6882	7185	

	Rabi	, 2014	<i>Rabi</i> , 2015			
	SEm ±	CD (P = 0.05)	SEm ±	CD (P = 0.05)		
NP	144.4	433	321.5	964		
F	110.1	310	135.3	381		
NP at F	320.4	NS	476.5	NS		
F at NP	288.9	NS	643.1	NS		

Yield attributes and management practices

Rabi, 2014 Rabi, 2015 \mathbf{F}_1 F₂ F₃ \mathbf{F}_4 Mean \mathbf{F}_1 F₂ F₃ F4 Mean N_1P_1 N_1P_2 N₁P₃ N_2P_1 N_2P_2 N_2P_3 N_3P_1 N_3P_2 N₃P₃ Mean

Table 5. Stover yield (kg ha⁻¹) of rabi maize as influenced by crop residue and nutrient management practices

	Rabi	, 2014	<i>Rabi</i> , 2015			
	SEm ±	CD (P = 0.05)	SEm ±	CD (P = 0.05)		
NP	251.5	754	165.6	497		
F	163.7	461	118.0	332		
NP at F	494.3	NS	348.6	NS		
F at NP	503.1	NS	331.2	NS		

P either with or without incorporation of residues of previous season during *rabi* along with recommended dose of potassium was found to be the optimum fertilizer dose for maize - maize cropping sequence.

LITERATURE CITED

- Ahmad, N., Amanullah, Jamal, T., Munir, I., Ali, A and Khan, M. 2007. Residual effect of nitrogen applied to maize on yield of barley. *Sarhad Journal of Agriculture*. 23(3): 549-552.
- ASG 2016. Directorate of Economics and Statistics, Department of Agriculture and Cooperation. Agricultural Statistics at a Glance, Ministry of Agriculture, Government of India, New Delhi. 79-81.
- Cayuela, M.L., Sinicco, T and Mondini, C. 2009. Mineralization dynamics and biochemical properties during initial decomposition of plant and animal residues in soil. *Applied Soil Ecology*. 41: 118-127.

- DMR. 2011. DMR Vision 2030. Directorate of Maize Research, Indian Council of Agricultural Research, New Delhi.
- Kiran, K.G. 2004. Effect of groundnut crop residue incorporation and nitrogen management on the performance of succeeding maize (*Zea mays L.*). *M.Sc. (Ag.) Thesis*. Acharya N.G. Ranga Agricultural University, Hyderabad, Andhra Pradesh.
- Maobe, S.N., Mburu, M.W.M., Akundabweni, L.S.M., Ndufa, J.K., Mureithi, J.G., Gachene C.K.K., Makini, F.W and Okello, J.J. 2010. Residual effect of *Mucuna pruriens* green manure application rate on maize (*Zea Mays* L.) grain yield. *World Journal* of Agricultural Sciences. 6(6): 720-727.
- Pandiaraj, T., Selvaraj, S and Ramu, N. 2015. Effects of crop residue management and nitrogen fertilizer on soil nitrogen and carbon content and productivity of wheat (*Triticum aestivum* L.) in two cropping systems. *Journal of Agricultural Science and Technology*. 17: 249-260.

- Ramu, Y.R. 2005. Agrotechniques for enhancing productivity and quality of hybrid maize (*Zea mays* L.). *Ph.D Thesis*. Acharya N.G. Ranga Agricultural University, Hyderabad, Andhra Pradesh.
- Saikumar, R., Kumar, B., Kaul, J., Chikkappa, S., Karjagi,G., Jat, S.L., Parihar, C.M and Kumar, A. 2012.Maize research in India historical prospective and future challenges. *Maize Journal*. 1(1): 1-6.
- Singh, D.P., Rana, N.S and Singh, R.P. 2000. Dry matter production and nitrogen uptake in winter maize (*Zea mays*) based intercropping system under different levels of nitrogen. *Indian Journal of Agronomy*. 45(4): 676-680.
- Verma, N.K and Pandey, B.K. 2013. Effect of varying rice residue management practices on growth and yield of wheat and soil organic carbon in rice-wheat sequence. *Global Journal of Science, Frontier Research in Agriculture and Veterinary Sciences*. 13(3): 33-38.