

GROWTH AND YIELD OF MAIZE (Zea mays L.) AS INFLUENCED BY CROP RESIDUES, RESIDUAL NUTRIENTS AND NUTRIENT MANAGEMENT PRACTICES

VIJAYA BHASKAR REDDY UPPALURU*, PRABHAKARA REDDY GADDAM, SRINIVASA REDDY MALLU AND P. KAVITHA

Department of Agronomy, Sugarcane Research Station, Vuyyuru.

Date of Receipt: 27-09-2022

ABSTRACT

Date of Acceptance: 30-11-2022

During *rabi*, 2014 and 2015 at Agricultural College Farm, Mahanandi plant height of maize differed significantly due to residual nutrients (main plots), nutrient doses \pm crop residues (sub plots) at harvest. Leaf area index differed significantly with respect to nutrient doses \pm crop residues at harvest during the second year, but interaction was not significant. There was significant influence of residual nutrients and nutrient doses \pm crop residues on the dry matter production of maize. Significantly higher grain yield of maize was recorded in N₃P₂ and N₃P₃ in both the years with respect to residual nutrients. With respect to crop residues significantly higher grain yield was recorded with F₂ (125% of F₁) which was however on par with F₄ (F₂+*Kharif* crop residue incorporation) in both the years.

KEYWORDS: Maize, Nutrient doses, Crop residues, Plant height, Dry matter and Yield.

INTRODUCTION

Maize (*Zea mays* L.) is an important cereal food crop cultivated both in tropical and temperate regions of the world with the highest production and productivity as compared to rice and wheat. India is the sixth largest producer of maize with 22.36 million tonnes of production from 9.40 million hectares, with a productivity of 2.4 t ha⁻¹. Now it is time to refine agricultural research in the line of cropping system approach, recycling of residues and efficient management of important nutrients like nitrogen and phosphorus particularly for staple food crops of rice, wheat and maize.

Crop residues are the parts of crops left over after the usable portions have been removed. Crop residues incorporated into the soil can serve as a source of nutrient recycling for plant growth and maintenance of soil fertility (Cooperband, 2002). The estimated annual production of crop residues in India is 501 million tonnes, containing 8.02 million tonnes of NPK (MNRE, 2009). Jain (1993) reported that in India, large quantities of crop residues are made available every year and about one third of the residues produced are available for direct recycling on the land and if used can add 2.19 million tonnes of NPK annually.

MATERIAL AND METHODS

The field experiment was conducted at College Farm of Agricultural College, Mahanandi campus of Acharya

N.G. Ranga Agricultural University during *rabi* seasons of 2014 and 2015, situated at 15.51° N latitude, 78.61° E longitude and at an altitude of 233.5 m above the mean sea level, in the scarce rainfall zone of Andhra Pradesh. A composite soil sample was collected at random from 0-30 cm soil depth and analyzed for physico-chemical properties prior to start of the experiments. The soil was sandy loam in texture, neutral in reaction, low in organic carbon and available nitrogen, high in available phosphorus and potassium. The experiment was conducted in the same plots of *kharif* season and was laid out in a split-plot design with three replications.

Treatments

There were nine main plots consisting of three nitrogen levels and three phosphorus levels of *kharif* season and four sub plots comprising of fertilizer and crop residue management practices.

Main plot treatments

Nine main plots (residual nutrients) consisting combination of three nitrogen levels 200, 250 and 300 kg N ha⁻¹ (N₁, N₂ and N₃ respectively) and three phosphorus levels 40, 60 and 80 kg P_2O_5 ha⁻¹ (P₁, P₂ and P₃ respectively) of *kharif* season.

Sub plot treatments

Four sub plots (nutrient doses \pm crop residues) comprising of fertilizer and crop residue management

^{*}Corresponding author, E-mail: u.vijayabhaskarareddy@angrau.ac.in

practices. F_1 : Recommended dose of N and P_2O_5 (250 kg N and 80 kg P_2O_5 ha⁻¹) F_2 : 125% of F_1 , F_3 : F_1 + *Kharif* crop residue incorporation and F_4 : F_2 + *Kharif* crop residue incorporation. A common dose of 60 kg K₂O ha⁻¹ was applied to all the plots.

The crop was sown at a spacing of 75 cm \times 15 cm. The test cultivar was P-3396 a single cross hybrid with the yield potential ranging from 7.5 to 8.0 t ha⁻¹. After harvest of the economic produce of *kharif* maize the stover was allowed to dry in the field itself and plot wise weight of the crop residue was recorded.

Plant height was recorded from the five tagged plants in each plot at harvest. It was measured from the base of the plant to the tip of the tassel and the mean plant height was expressed in cm. Leaf area was measured by using LI-COR model LI-300 leaf area meter with transparent conveyor belt (Model I-3050 A) utilizing an electronic digital display. Five plants from gross plot area to measure leaf area in cm². Leaf area index was calculated by dividing the total leaf area with corresponding land area as per the formula suggested by Watson (1952). Five plants from the destructive sampling area were cut to the base at harvest, sun dried and then oven dried at 60°C till a constant weight was obtained and expressed in kg ha⁻¹. Grain from net plot was sun dried sufficiently, cleaned thoroughly, weighed and expressed in kg ha⁻¹. The data recorded on various parameters during the course of investigation were statistically analyzed following the method of analysis of variance for split- plot design during *rabi* season as suggested by Panse and Sukhatme (1985).

RESULTS AND DISCUSSION

Plant height

Irrespective of the treatments, plant height of maize progressively increased with age of the crop up to harvest. Variation in plant height was significant with respect to nutrient doses \pm crop residues (sub plots) at harvest.

 Table 1. Plant height (cm) of rabi maize at harvest as influenced by crop residues and nutrient management practices

	<i>Rabi</i> , 2014						-	<i>Rabi</i> , 2015	5	
	F ₁	F ₂	F ₃	F ₄	Mean	\mathbf{F}_1	F ₂	F ₃	F4	Mean
N_1P_1	250	251	241	245	247	236	238	231	234	235
N_1P_2	237	244	242	245	242	225	232	230	230	229
N_1P_3	244	236	230	248	239	225	228	221	232	227
N_2P_1	225	238	239	249	238	212	239	230	229	228
N_2P_2	251	252	248	260	253	238	242	235	241	239
N_2P_3	246	248	236	248	244	237	229	224	230	230
N ₃ P ₁	250	253	234	255	248	233	248	231	231	236
N ₃ P ₂	259	261	249	243	253	237	248	223	248	239
N ₃ P ₃	246	257	232	260	248	235	245	243	245	242
Mean	245	249	239	250		231	239	230	236	

	Rabi	, 2014	<i>Rabi</i> , 2015		
	SEm ±	CD (P = 0.05)	SEm ±	CD (P = 0.05)	
NP	5.48	NS	6.93	NS	
F	2.10	5.9	1.61	NS	
NP at F	7.73	NS	8.09	NS	
F at NP	10.97	NS	13.85	NS	

	<i>Rabi</i> , 2014						<i>Rabi</i> , 2015			
	F ₁	F ₂	F ₃	F4	Mean	\mathbf{F}_1	\mathbf{F}_{2}	F ₃	F4	Mean
N_1P_1	3.58	3.65	3.65	3.67	3.64	3.68	3.71	3.65	3.73	3.69
N_1P_2	3.63	3.64	3.56	3.75	3.64	3.35	3.57	3.20	3.76	3.47
N ₁ P ₃	3.35	3.60	3.33	3.61	3.47	3.07	3.37	3.26	3.48	3.30
N_2P_1	3.52	4.02	3.36	3.53	3.61	3.44	4.10	3.40	3.52	3.62
N_2P_2	4.17	3.88	3.58	3.99	3.91	3.62	3.85	3.73	3.87	3.77
N_2P_3	4.04	4.08	3.56	3.83	3.88	3.74	3.88	3.83	3.91	3.84
N_3P_1	4.10	3.86	3.64	3.58	3.80	3.75	3.78	3.79	3.87	3.80
N_3P_2	3.53	4.14	3.72	3.78	3.79	3.74	4.01	3.58	3.67	3.75
N ₃ P ₃	3.62	3.79	3.76	4.19	3.84	3.84	3.89	3.88	3.95	3.89
Mean	3.73	3.85	3.57	3.77		3.58	3.80	3.59	3.75	

 Table 2. Leaf area index of *rabi* maize at harvest as influenced by crop residue and nutrient management practices

	Rabi	, 2014	Ral	bi, 2015
	SEm ±	CD (P = 0.05)	SEm ±	CD (P = 0.05)
NP	0.177	NS	0.131	0.39
F	0.121	NS	0.088	NS
NP at F	0.362	NS	0.264	NS
F at NP	0.355	NS	0.262	NS

There was some evidence of residual nitrogen effect on plant height of maize as higher plant height was observed in N_3P_2 (300 kg N + 60 kg P_2O_5 ha⁻¹) in the first year and N_3P_3 (300 kg N + 80 kg P_2O_5 ha⁻¹) in the second year, which might be due to the recovery of small percentage of nitrogen applied to previous maize crop. These results are in line with the findings of Felix *et al.* (2005) on the recovery of N fertilizers.

Application of 125% of recommended dose of N and P_2O_5 alone or along with crop residues expressed significant effect on plant height, as additional dose of fertilizer nutrients may be required for the mineralization of the incorporated crop residues as well as for the decomposition of the roots of the previous maize. These results are in conformity with the findings of Arshadullah *et al.* (2012), who documented the requirement of additional dose of nitrogen for rice crop when cultivated with straw incorporation. The lower plant height in 100% recommended dose of N and P_2O_5 along with crop

residues might be due to the fact that un-decomposed residues with wider C: N ratio immobilized the N in the soil and released less N initially to the crop growth.

Leaf area index

Irrespective of the treatments, leaf area index of maize increased progressively with age of the crop.

Effect of residual nitrogen and phosphorus on LAI of succeeding maize was significant in the present investigation and the results are in accordance with the findings of Ahmad *et al.* (2007). There was evidence for residual effect of nitrogen as maximum LAI was observed in those plots which were supplied with more nitrogen in the previous season, which might be due to the recovery of small per centage of nitrogen applied to the previous maize crop. Similar response to the nitrogen applied in the preceding season was observed by Pandiaraj *et al.* (2015) on silty loam soils.

Vijaya Bhaskar Reddy et al.,

				Rabi, 2015	5					
	F ₁	F ₂	F ₃	F4	Mean	F ₁	F ₂	F ₃	F4	Mean
N_1P_1	16441	18011	17114	16062	16907	15128	15664	15043	15589	15356
N_1P_2	16191	17163	16361	16240	16489	13986	14770	14075	15308	14535
N ₁ P ₃	14762	16087	15941	15428	15555	13558	14513	14284	14824	14295
N_2P_1	15702	18855	16790	16133	16870	14165	16168	15448	15818	15400
N_2P_2	18273	17793	16935	17898	17725	15682	16582	16133	16629	16257
N ₂ P ₃	18125	18211	16416	17792	17636	15815	16029	16302	16548	16174
N ₃ P ₁	18927	19311	17327	17565	18283	15996	16096	16142	16603	16209
N ₃ P ₂	16246	20574	18886	17874	18395	16337	17285	16477	16546	16661
N ₃ P ₃	16396	18968	17306	17959	17657	16440	17098	17047	17139	16931
Mean	16785	18330	17008	16995		15234	16023	15661	16112	
	<i>Rabi</i> , 2014							<i>Rabi</i> , 2015	5	
	SEm ± C		CD (P =	= 0.05)	.05) SEm ±			CD (P = 0.05)		
NP		277.2		83	1	365.7			1096	
F		168.1		47	3		183.1		515	

1507

1469

 Table 3. Dry matter production (kg ha⁻¹) of *rabi* maize at harvest as influenced by crop residue and nutrient management practices

The highest leaf area index was associated with the application of 125% of recommended dose of N and P_2O_5 alone (F₂), which was however, in parity with the application of 125% of recommended dose of N and P_2O_5 in combination with crop residue incorporation (F₄). Increase in leaf area index with increase in nitrogen levels along with crop residue incorporation was evident due to the favorable effect of nutrients on cell division and enlargement, resulting in production of more number of leaves as well as greater expansion of the individual leaf, there by consistent increase in leaf area per plant. These findings are in conformity with the results of Kiran (2004) and Mala (2008).

517.3

554.4

Dry matter production

NP at F

F at NP

Irrespective of the treatments, dry matter production of maize crop increased progressively with age of crop up to harvest.

Dry matter production differed significantly due

to residual nutrient effects (main plots), nutrient doses \pm crop residues (sub plots) and their interaction during both the years with exception with respect to interaction in the second year.

NS

NS

600.2

731.4

Effect of residual nitrogen and phosphorus on dry matter production of succeeding maize was significant and was in accordance with the findings of Verma *et al.* (2013). There was clear evidence of residual nitrogen effect as maximum dry matter was recorded in those plots which were supplied with more nitrogen in the previous season, which might be due to recovery of nitrogen applied to the previous maize crop. Similar response to the higher nitrogen levels applied in the previous season was observed by Pandiaraj *et al.* (2015) on silty loam soils. Dry matter production was not significantly affected by the rate of phosphorus applied in preceding season and observed inconsistent dry matter at different P levels. Similar response in soybean in ferralsols of West Kenya was noticed by Vandamme *et al.* (2014).

Growth and yield management practices

 Table 4. Grain yield (kg ha⁻¹) of *rabi* maize as influenced by crop residue and nutrient management practices

<i>Rabi</i> , 2014					<i>Rabi</i> , 2015				
F ₁	F ₂	F ₃	F ₄	Mean	\mathbf{F}_1	F ₂	F ₃	F4	Mean
6864	6999	6990	7024	6969	7055	7116	6998	7152	7080
6954	6969	6813	7185	6980	6421	6838	6129	7197	6646
6413	6890	6375	6919	6649	5881	6456	6252	6670	6315
6746	7704	6431	6767	6912	5819	7421	6521	6749	6628
7990	7436	6862	7649	7484	7130	7384	7148	7409	7268
7738	7828	6815	7339	7430	7366	7433	7334	7493	7406
7864	7406	6972	6852	7273	7183	7249	7261	7408	7275
6765	7931	7129	7252	7269	7363	7677	6858	7024	7230
6931	7259	7213	8026	7357	7359	7458	7441	7561	7455
7140	7380	6844	7224		6842	7226	6882	7185	
/140	7500				0042				
_	6864 6954 6413 6746 7990 7738 7864 6765 6931	F1 F2 6864 6999 6954 6969 6413 6890 6746 7704 7990 7436 7738 7828 7864 7406 6765 7931 6931 7259	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F_1 F_2 F_3 F_4 Mean F_1 68646999699070246969705569546969681371856980642164136890637569196649588167467704643167676912581979907436686276497484713077387828681573397430736678647406697268527273718367657931712972527269736369317259721380267357735971407380684472246842	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F_1 F_2 F_3 F_4 Mean F_1 F_2 F_3 F_4 68646999699070246969705571166998715269546969681371856980642168386129719764136890637569196649588164566252667067467704643167676912581974216521674979907436686276497484713073847148740977387828681573397430736674337334749378647406697268527273718372497261740867657931712972527269736376776858702469317259721380267357735974587441756171407380684472246842722668827185

	Rabi	, 2014	<i>Rabi</i> , 2015		
	SEm ±	CD (P = 0.05)	SEm ±	CD (P = 0.05)	
NP	144.4	433	321.5	964	
F	110.1	310	135.3	381	
NP at F	320.4	NS	476.5	NS	
F at NP	288.9	NS	643.1	NS	

Dry matter production of hybrid maize tended to increase progressively with advance in the age of the crop up to harvest. At all stages of crop growth, increasing the nitrogen levels from 100 to 125 % recommended dose of N and P2O5 ha-1 with and without crop residue incorporation resulted in increased dry matter production. Nitrogen, being the major constituent of chlorophyll, whose intensity is known to increase with added N supply, along with other nutrients released by the decomposition of crop residues could have promoted satisfactory plant growth under assured and continuous balanced supply of nutrients. Increased absorption of nutrients might have maintained higher meristematic activity with favorable effect on cell division and enlargement, resulting in increased plant height and production of larger leaves. The increase in source size (leaf area) might have resulted in better light interception and utilization of radiant energy, thereby enhancing the photosynthetic efficiency, which eventually resulted in higher dry matter accumulation under adequate nutrition.

Enhanced dry matter production, as evidenced in this investigation corroborates with the previous findings of Kiran (2004), Felix *et al.* (2005) and Ahmad *et al.* (2007).

Grain yield

Variation in grain yield was significant due to residual nutrient effects (main plots) and nutrient doses \pm crop residues (sub plots) but their interaction was not significant during both the years.

Graded levels of nitrogen exerted favorable influence on grain yield of maize. The highest yield was obtained with the application of 250 kg and 300 kg N ha⁻¹ in the previous season but the response to phosphorus was marginal. Higher level of biomass accrual and efficient translocation of assimilates to the sink due to the sufficient and continuous supply of nitrogen and other nutrients throughout the crop period might be the findings of Kiran (2004). The highest grain yield of hybrid maize was produced with the application of 125% recommended dose of N and P_2O_5 alone, however comparable with crop residue incorporation, application of 100% recommended dose of N and P_2O_5 alone, while it was found to be the lowest with the application of 100% recommended dose of N and P_2O_5 along with crop residue incorporation. The higher level of grain yield was due to the favourable influence of consistent and adequate availability of nutrients especially nitrogen throughout the crop growth period, which favoured the production of more photosynthates coupled with better partitioning to the sink, under higher level of nutrients. The results are in conformity with the findings of Singh *et al.* (2000) and Ramu (2005).

Application of 250 kg N and 60 kg P_2O_5 ha⁻¹ during *kharif* season and 125% recommended dose of N and P either with or without incorporation of residues of previous season during *rabi* along with recommended dose of potassium was found to be the optimum fertilizer dose for maize - maize cropping sequence in southern agro climatic zone of Andhra Pradesh.

LITERATURE CITED

- Ahmad, N., Amanullah, Jamal, T., Munir, I., Ali, A and Khan, M. 2007. Residual effect of nitrogen applied to maize on yield of barley. *Sarhad Journal of Agriculture*. 23(3): 549-552.
- Arshadullah, M., Ali, A., Hyder, S.I and Khan, A.M. 2012. Effect of wheat residue incorporation along with N starter dose on rice yield and soil health under saline sodic soil. *The Journal of Animal and Plant Sciences*. 22(3): 753-757.
- Cooperband, L. 2002. Building soil organic matter with organic amendments. Centre for Integrated Agricultural Systems (CIAS), College of Agricultural and Life Sciences, University of Wisconsin-Madison. 1-13.
- Felix, B.F., Bruce, A.R., William, D.R., Robert, L.T and Robert, B.H. 2005. Recovery of residual fertilizer-N and cotton residue-N by Acala and Pima cotton. *Science Society of America Journal*. 69: 718-728.
- Jain, M.C. 1993. Bio conversion of organic wastes for fuel and manure. *Fertilizer News*. 35(4): 55-55.
- Kiran, K.G. 2004. Effect of groundnut crop residue incorporation and nitrogen management on the performance of succeeding maize (*Zea mays* L.). *M.Sc. (Ag.) Thesis*. Acharya N.G. Ranga Agricultural University, Hyderabad, Andhra Pradesh.

- Mala, S. 2008. Response of hybrid maize to crop residue incorporation in combination with graded levels of nitrogen. *Ph.D Thesis*. Acharya N.G. Ranga Agricultural University, Hyderabad, Andhra Pradesh.
- MNRE, 2009. Ministry of New and Renewable Energy. Government of India, New Delhi. *www.mnre.gov. in/biomass resources*.
- Pandiaraj, T., Selvaraj, S and Ramu, N. 2015. Effects of crop residue management and nitrogen fertilizer on soil nitrogen and carbon content and productivity of wheat (*Triticum aestivum* L.) in two cropping systems. *Journal of Agricultural Science and Technology*. 17: 249-260.
- Panse, V.G and Sukhatme, P.V. 1985. Statistical Methods for Agricultural Workers. *Indian Council* of Agricultural Research, New Delhi. 205-210.
- Ramu, Y.R. 2005. Agrotechniques for enhancing productivity and quality of hybrid maize (*Zea mays* L.). *Ph.D Thesis*. Acharya N.G. Ranga Agricultural University, Hyderabad, Andhra Pradesh.
- Singh, D.P., Rana, N.S and Singh, R.P. 2000. Dry matter production and nitrogen uptake in winter maize (*Zea mays*) based intercropping system under different levels of nitrogen. *Indian Journal of Agronomy*. 45(4): 676-680.
- Vandamme, E., Pypers, P., Vanlauwe, B., Baijukya, F and Merckx, R.S. 2014. Residual phosphorus effects in soybean-maize rotations on a P-deficient Ferralsol. *Nutrient Cycling in Agroecosystems*. 98: 187–201.
- Verma, N.K and Pandey, B.K. 2013. Effect of varying rice residue management practices on growth and yield of wheat and soil organic carbon in rice-wheat sequence. *Global Journal of Science, Frontier Research in Agriculture and Veterinary Sciences*. 13(3): 33-38.
- Watson, D.J. 1952. The physiological basis of variation in yield. *Advances in Agronomy*. 4: 101-105.